Nissan EVアプリの機能追加

自動車メーカーだけあって、スマホアプリの使い勝手がいまいちな日産。きっとテスラならこうはならないだろうと思いながら、それでも機能は便利なのでアプリを使っているオーナーは多いことでしょう。

遠隔でカーエアコンを起動できるのは非常に快適です。これだけでアプリの利用価値がある。エアコンに比べればバッテリーの残りを確認できるのはおまけのようなもの。他の機能は・・・私はあ使わない。

2019年2月にNissan EVアプリが更新されて、新たに使える機能が増えました。増えた機能は、急速充電器の地図表示と、充電開始時間の表示です。前者の機能はカーナビやいくつかの充電器ナビサイトで確認することができました。一方、後者の機能はこれまで高速充電なびしか持っておらず、高速道路SAPA以外の充電器に適用が拡大されたという点で画期的です。

これまで各充電器はカーナビから利用状況を確認すれば、使用中か否かを確認できるという状況でした。使用中か否かがわかるだけでも便利ではありますが、もし残り5分で充電が終わるような状況なら空いているも同然ですし、まだ充電が20分以上継続しそうならほかの充電器を探すことになるでしょう。国内の急速充電器が基本的に30分で停止する設定になっていることから、充電開始時刻がわかるということは各ドライバーがどの急速充電器に向かうかの優先順位をつける上で非常に有益です。

東名高速の足柄SA付近をアプリで表示したところ。足柄SAはもちろん、御殿場アウトレットの急速充電器が空いていることがわかる。
充電器のアイコンをタップすると詳細画面に移行する。複数台の充電器があっても、出力、設置台数、空き台数と使用中の充電器の開始時刻が表示される。

単に自動車をつくるだけでなく、ドライバーのユーザーエクスペリエンスを改善しようという意思が日産自動車にあることを示す事例であり、大変好ましく思います。

モービルアイ、日本の市街地のHDマップ構築を本格始動

モービルアイ、日本の市街地のHDマップ構築を本格始動
愛知県豊橋市で、500台規模の車両用意へ

日産リーフZE1をはじめとした自動運転技術プロパイロットはイスラエルのモービルアイが技術提供している。そのモービルアイが日本の市街地のHDマップ構築を車両500台の規模で実施するという。

ニュースを見て気になったのが、HDマップをつくのが愛知県豊橋市だという点。東京大阪でなく。名古屋でもなく、なぜ豊橋?モービルアイと取引のあるジャパン・トゥエンティワン株式会社に業務が委託されていることや、豊橋技科大が協力することが理由なのかもしれない。

日本の企業に委託するなら見当違いかもしれないが、もし輸入車を使うなら豊橋市になる三河港を使う可能性がある。三河港はフォルクスワーゲンやボルボをはじめとした外車の輸入基地であり、およそ20のブランドが陸揚げに使用している

ところで、2019年には複数車線対応のプロパイロットが出る予定で、そのために高速道路のHDマップはすでに日産と協力して構築されている様子。

Battery degradation of Nissan LEAF ZE1 40kWh

Battery degradation is a serious problem for electric vehicles, but there are few reliable information. Therefore, as an owner of the electric car, I will introduce the data obtained by measuring my Nissan LEAF ZE1.

I have owned the 40 kWh LEAF right after the release in October 2017, mainly driving around Tokyo. One year after its delivery, the data collected with an unofficial tool, LeafSpy, indicated that the battery deteriorated by 7% in one year. Considering the Nissan vice president told at the announcement of ZE1 LEAF that battery degradation of new LEAF is suppressed within 10% even after 10,000 km/year running for 10 years, the current result was much worse than the expectation.

In order to verify my data, I searched LeafSpy ‘s SOH published on the Internet, and collected 3 cases from Japan (including my own) and 2 cases from the UK. These are summarized in the figure below. As you can see, in either cases, the SOH decreased by about 7% in one year.

I found that at least the initial battery degradation was fast. I will continue collecting data and observe the progress.

ZE1リーフのバッテリー劣化について、納車1年時点で書いたひとつ前の記事にネット上で入手できたデータを追加しました。日本3件、英国2件のデータを並べてみても、私のリーフが異常に早くSOH低下しているわけではないようです。

新型リーフ (2017) のバッテリー劣化 – 新車12か月点検を終えて

2代目日産リーフの新車半年点検時点における電池の劣化状況について以前報告しました。今回は新車12か月点検後の情報アップデートです。バッテリーの劣化は予想より早い印象です。

納車から1年が経過しましたが、体感できるような劣化や故障はありません。1年間の走行距離は約13,000 kmで、初代のリーフに乗っていたときより年間2,000 kmほど走行距離が長くなりました。高速道路で遠出をするというときに、これまでなら東京から山梨くらいでいたところを、長野まで行けるようになった感じです。一日に急速充電を何度も繰り返すのは厳しいという問題はあっても、遠出の前には満タン充電しておくなり、滞在先での普通充電を活用するなり、使い方を気を付けているので深刻な問題になっていません。

高速道路を走行する際は、プロパイロットのおかげでずいぶんと楽になりました。アクセルを踏み続けなくてもいいというだけで、疲れ方が違います。
ただし、人間の運転ほどの乗り心地ではありません。前の車をカメラで認識して追従運転するというシステムなので、前の車が車線変更でいなったときの加速が激しかったりします。もちろんインターチェンジなどで他の車が合流してくる際に減速して合流しやすくしてあげることもないので、そこはドライバーが操作してあげる必要があります。システムの特徴を理解して使っていれば、安全に楽に運転できる機能です。

EV乗りとして最も気になるのが、走行用バッテリーの劣化に伴う容量低下です。冒頭でも述べたように、体感できる差としてはありません。しかし、物質としてのリチウムイオン電池の劣化は進んでいるはずです。
車のインパネにはバッテリーの劣化状況が12セグメントで表示されています。これでは詳細な変化は追えません。そこで、非公式のLeafSpyというアプリを使って情報を収集します

納車から月数とSOHの推移を下図に示します。トレンドとしては、月ごとに0.53ずつSOHが低下しているようです。この調子でいくと2年半ごろにセグメント欠け (12セグメントのうち12セグメントが欠ける) が生じると予想できます。SOHとセグかけの関係が初代リーフと同じSOH15%低下で11セグメント、以降SOH6.25%低下で次のセグメントだったと仮定した場合ですが。10年10万kmで劣化10%以内という宣伝からすると、ちょっと予想より早いですね。いわゆる初代リーフ中期型と同じくらいの劣化速度と思います。

納車からの月数とSOHと推移。走行距離は年13,000 kmほど。最初のころはLeafSpyが2代目リーフに対応していなかったのでデータが取れていないが、SOHを外挿した切片が100%近いので大きくは外れていないだろう。

データの収集と公表は今後も続けます。どうかSOH低下が収まりますように! 実際のところ、リーフのバッテリーは完全な空や満タンにならないようにバッファー領域が設定されています。電池劣化とバッファー領域の関係はこれまで気にしていなかったので、こちらもデータを取ってみようと思います。

追記 2019年1月26日
他のZE1リーフについて調べてみると、12か月点検の時点で走行距離22,000 km、SOH93.7%という報告がありました。走行距離は私の2倍近いですが、納車からの時間に対するSOHの低下具合は同じ程度です。

追記 2019年1月31日
さらにネット上に公開されているデータを収集したところ、日本から3件、イギリスから2件のデータを入手できました。下図のように、おおまかには上の図で示した黒点線と同じような速度でSOHが低下しています。
図中の凡例には、国と走行距離を示しています。日本とイギリスで同じような範囲にデータが収まっていることから、2018年の酷暑が原因で日本での電池劣化が激しいという仮説は間違っていそうです。このままでは10年10万kmで劣化10%以内には到底なりません。バッテリー自体には問題がないのに、車載のバッテリー管理機構の設定に問題があるため見かけ上SOHが低下しているように見えるだけではないかとすら疑ってみたくなります。

2018年12月

12月の走行距離は1249 kmでした。

電費は6.2 km/kWhで11月から1.1 km/kWh低下しました。暖房の使用と高速走行の影響でしょう。800 kmくらいは高速を走っているので。

月額2,160円のZESP2に加えて、普通充電で657円を使いました。ガソリン140 円/Lとして燃費62.0 km/Lと同等です。

急速充電 15回、普通充電は2回、急速充電1回あたりの走行距離は83 kmでした。

Google Apps Script を使ったかんたんリマインダーの作成

ユーザーのリテラシーが高くない環境でG Suiteを使いこなすことを考えている。Gmailにはアドオンで予約送信機能を付けることができるが、アドオンの利用も難しいレベルを想定している。

Google スプレッドシートはExcelとほぼ同じように使えるので、あまりPCの扱いが得意でない方でも直感的に利用できる。そこで、スプレッドシートにGoogle Apps Script (GAS) で手を加えることで、だれでも簡単に指定したタイミングでメールを送ることができる仕組みを作成した。

まず、インターフェイスであるスプレッドシートのファイルを作成した。以下の図に示すように、ABC列を送信条件、DEF列を送信するメールの中身とした。入力のやり方が直感的にわからない方のために、3行目に入力例を用意した。
宛先にはカンマで区切ることで複数アドレスを入れられることや、メール本文のセルでセル内改行をするとメール本文でも改行されることなどを明記した。

Google スプレッドシートの画面作例

メール送信タイミングの条件は、データの入力規則で予め入力できる値を制限しておくとよい。作成者が意図しない入力を防げるし、表計算ソフトになれていないとキーワードで値を入力させるよりマウスで選択肢から入力する方が安心する場合がある。
また、余計な空白があると、使用者が意図しない入力をしたり、混乱したりする懸念があるので、G列から右は削除した。

ツール>スクリプトエディタから以下のコードを貼り付ければ、一応動作するものがつくれるはず。時間主導型トリガーで「1時間ごと」に実行するような条件に設定しておけば、条件と合う時刻にGASが作動し、メールを送ってくれる。

function reminder() {
  //スプレッドシートのデータを取得
  var sheet = SpreadsheetApp.getActive().getSheetByName('reminder');
  //dataにはシートreminderのデータが2次元配列で格納される
  var data = sheet.getDataRange().getValues();
  //データ入っている最終列を取得
  var lastrow = sheet.getLastRow();
  
  //トリガー起動時の日付、曜日、時刻を取得
  //現在の年月日時刻を求める
  var date = new Date();
  //日付のみ分取
  var date_now = date.getDate();
  //曜日のみ分取 値は0~6 (日曜日~土曜日)
  var day_now = date.getDay();
  //時のみ分取
  var time_now = date.getHours();
  
  //曜日を数値から文字に変換
  var dayNames = ['日','月','火','水','木','金','土'];
  var day_now_name = dayNames[day_now];
  
  //スプレッドシートの上から最後の行まで繰り返し
  //配列のインデックスは0から始まることに注意。スプレッドシートの3行目を入力例にしてので、4行目 i = 3 からスタート。
  for (var i = 3; i<lastrow; i++){
  
  //送信条件を格納
  //日付
  var date_to_send = data[i][0];
  //曜日
  var day_to_send = data[i][1];
  //時間帯
  var time_to_send = data[i][2];
  
  //送信条件判定
  //日付判定 日付条件指定なしの場合は毎日実行するようにした
  if (date_now == date_to_send){
    var flag_date = true;
  }else if (date_now =='指定なし') {
    var flag_date = true;
  }else{
    var flag_date = false;
  }

  //曜日判定
  if (day_now == day_to_send){
    var flag_day = true;
  }else{
    var flag_day = false;
  }
  
  //時間帯判定
  if (time_now == time_to_send){
    var flag_time = true;
  }else{
    var flag_time = false;
  }
  
  //メール送信条件判定 すべてのflagがtrueならメールを送信する
  if (flag_date && flag_day && flag_time){
  //送信内容取得
  var sendto = data[i][3];
  var title = data[i][4];
  var message = data[i][5];
  
  //メール送信
  MailApp.sendEmail(
    sendto,  //メール宛先
    title,   //メール件名
    message, //メール本文
    {
      name: 'かんたんリマインダー'   //差出人の名前
    }
  );
  }
  
  //繰り返し単位終わり
  }
}

関連項目 GoogleフォームとGASでつくる同報メール送信システム

低炭素社会事例集

風力発電

福島浮体式洋上ウィンドファーム実証研究事業 (浮体式)
2013年に浮体式洋上変電所、2 MW風車、2015年に7 MW風車、2016年に5 MW風車を設置した経産省の実証実験。福島県楢葉町の沖合20 kmで実施している。量産商用機を使った2 MWは順調、新開発の実証機を使った5 MWと7 MWは不調で特に7 MW機は稼働率が低すぎるため採算取れず撤去すべしという状況に2018年の段階でなっている。福島原発事故後ということもあり、かなり世論を煽る人 (丸紅、飯田哲也氏など) もあったため、野心的というか拙速というかな計画だった模様。

五島列島 (浮体式)
五島列島の福江島から5 kmの沖合で2016年3月に営業運転開始。風車自体は2013年10月から椛島沖の環境省実証実験で稼働していた2 MWのもの。2012年6月100 kW風車を設置し、漁業などへの影響を調べた。レポートでは魚が減るどころか、むしろ浮体が漁礁のように魚を増やす効果を示したという。台風直撃にも耐えた実績がある。地元に求められて風力発電施設を福江島に移設して営業運転開始という成功事例といえよう。戸田建設は10基まで増やしてコストダウン、収益性改善を構想しているようだ。

Hywind Scotland (浮体式)
ノルウェーの石油会社Statoilが設置。6MWの風車が5基、スコットランドの沖合25 kmに設置されている。水深は120 m程度。2017年10月に運転開始。

モレイ・イースト洋上風力発電所
英国の風力発電事業者モレイ・イーストがスコットランド東海岸沖合に設置。MHI Vestas (三菱重工系) の9.5 MW級洋上風力発電設備V164-9.5MWを100基導入する。2022年運転開始を予定。

トライトン・ノール Triton Knoll
ドイツ系イノイジー innogy 社傘下のトライトン・ノール洋上風力発電事業会社 (Jパワーが25%、関西電力が16%出資) が英国東岸の北海上に設置。MHI Vestasが9.5 MW級洋上風力発電設備V164-9.5MWを90基導入する。2021年運転開始を予定

Vineyard Wind
Vineyard Windがマサチューセッツ州Martha’s Vineyardに設置する。MHI Vestasの9.5 MW級洋上風力発電設備V164-9.5MWを導入し、800 MW級の発電設備を建設する。2021年に導入予定。

洋上風力発電設備のシェア (2017年) では、シーメンス・ガメサ・リニューアブルエナジーが6割弱、MHIヴェスタスが2割弱。

マイクログリッド

宮古島
沖縄の離島における分散型エネルギー
離島は火力発電のコストが高い。自然エネルギー利用にコスト的な優位性あり。
風力発電は風車が台風で破壊されるトラブル発生。可倒式なら台風時の保護に加えて、メンテナンスも容易になる。離島は電力網が小さいため、あまり大きい出力の風力発電は出力変動を吸収できない。

EVの大規模導入

セブンイレブン
トヨタ車体の小型EVコムスを宅配用に活用。

日本郵便
2010年に集配用EVを1000台導入するこにしたが、残念な事情で頓挫した。コンバートEVで名をはせたベンチャー企業ゼロスポーツは破産した。2011年には三菱自動車がMINICAB-MiEVを発売するも、大量採用の知らせは聞こえていない。EVベンチャーといえば、ナノオプトニクス・エナジーもシムドライブも消えてしまった。そう考えるとテスラはよくやったものだ。
日本郵便は2018年から電動バイク(HONDA)の採用を始める模様。

地熱発電

松尾八幡平地熱発電所
国内で約22年ぶり、岩手県で7MW級の地熱発電所が本格稼働
岩手県松尾八幡平地域で2019年1月から「松尾八幡平地熱発電所」の運転を本格的に開始した。定格出力7499kW(キロワット)で、出力7000kWを超える地熱発電所の稼働は国内で約22年ぶりという。

日産リーフe+ (2019年モデル) 発表

2019年1月9日に2代目日産リーフの高容量バッテリーモデルe+が発表されました。1月23日に発売される予定です。

リーフが走っているのは西伊豆スカイライン、俳優が登山しているシーンは白馬の模様。

電池容量が現行 (2018年モデル) の40 kWhから62 kWhに増えました。これによって、満タン充電時の航続距離が現行 (2018年モデル) の322 km (WLTCモード) 400 km (JC08モード) から458 km (WLTCモード) 570 km (JC08モード) に伸びました。
また、最高速度が140 km/hから157 km/hになりました。電池容量が大きくなったことで、出力も上がったのでしょう。
e+モデルは標準モデルに対して、Xグレードでほぼ50万円、Gグレードで73万円の高値です。

私が乗っている2018年モデルの航続距離 (一般道) はほぼWLTCモードの値と同じだったので、e+モデルは450 kmを無充電で走破できるでしょう。私の経験上、高速道路は8掛けくらいの距離を走れるので、高速道路でも360 kmくらい走れるでしょう。参考に、東名高速の東京ICから小牧ICが約340 kmです。浦和から仙台も同じくらい。

バッテリーの容量は1.5倍になりましたが、室内空間には影響ありません。バッテリーパックは大きくなっているので、全高が高く、最低地上高が低くなっています。大きくなったバッテリーパックに288セル (従来は192セル) を敷き詰めている写真が公開されていますが、ずいぶんと窮屈そうです。モジュールのフレームがヒートシンク的に働いてくれると良いのですが。e+モデルのバッテリー容量アップは電池を並列つなぎで増やした効果がほとんどですので、全体として出力電流が同じでも、1セルあたりに流れる電流は2/3倍に減少します。電流の減少は発熱量の低下につながりますが、モジュールの設計変更と合わせて総合的に電池に良い方に転ぶか悪い方に転ぶか、私には予想がつきません。

40 kWhでさえ一般家庭の消費電力からしたら数日分に相当する大容量なのに、62 kWhの充電は何時間かかるのだろうかと心配になります。そこはやはりe+モデルの普通充電が6 kW (標準モデルではメーカーオプション108,000円) に標準対応しているようです。6 kWで充電できるなら、夜中に満充電近くまで充電することが可能ですので、通勤等で日常的に長距離運転するユーザーにも対応できるでしょう。
2019年1月の日本国内では、急速充電器は出力50 kW、30分がベスト性能です。この条件で2018年モデルは約22 kWhの充電ができますが、e+モデルからしたら電池容量の1/3程度にすぎません。e+モデルは最大100 kWの急速充電に対応しているので、今後より高出力の急速充電器が普及してもそのまま使用できます。

なお、現行モデルもさりげなくLEDヘッドライトが標準装備になった模様。LEDヘッドランプは54,000円のメーカーオプションだった。また、日産リーフのスマホアプリでカーナビ同様に充電器の空き状況を調べられるようになるらしい。これは便利だ!
また、ようやくETC2.0ユニットがディーラーオプションに登場。さらにカーナビがAndroid Auto対応。従来はApple Car playしか対応していなかった。
さらによく見ると、Xグレードのプロパイロットが162,000円から77,760円と半額以下に安くなっている。これでずいぶん安くなったと思ったら、ベースのXグレードの価格が上がっていて、私が購入した2017年9月とほとんど金額が変わらない。

2年ほど前から、60 kWhモデルが登場する際にはバッテリーセルの供給元がAESCからLG化学に変わるという噂がありました。今回発表された62 kWhのバッテリーパックは従来のAESC製を力業で容量アップしたものなので、おそらくセルもAESCのものを使っていると予想します。

オーストリア、ハンガリー巡見 (10/10) ウィーンから羽田

ゴールデンウィークにオーストリア南部の工業都市グラーツの近郊に住む友人を訪ねました。

  1. 羽田からウィーン
  2. ウィーンからグラーツ
  3. グラーツ
  4. グラーツからザルツブルク
  5. ザルツブルク
  6. ザルツブルクからブダペスト
  7. ブダペスト
  8. ブダペストからウィーン
  9. ウィーン
  10. ウィーンから羽田

ウィーンから日本へ

ウィーンからミュンヘン空港を経由して羽田へ。ミュンヘン空港では、日本のパスポートでもEU市民と同じく自動の出国手続きができるようだった。人の窓口に並んでしまったのと、混んでいなかったので、スルーしてしまったのが悔やまれる。
EasyPASS und EasyPASS-RTP
ミュンヘン空港のターミナル2では、出国時に事前の登録なくEU市民と同じくEasyPASS自動ゲートを試験的に利用できる。対象となる国籍は、日本、韓国、カナダ、オーストラリア、ブラジル、チリ、イスラエル、モナコ、ニュージーランド。対象年齢は18歳以上。
事前登録制のEasyPASS-RTPも日本国籍に対応した模様。対応した空港はベルリン-テーゲル、ケルン、デュッセルドルフ、フランクフルト、ハンブルク、ミュンヘン。事前登録は空港内のドイツ警察の事務所で行う。EasyPASSを使っても、パスポートにスタンプを押される作業は人が行う。

この風景ともおさらば。
ウィーンの空港ターミナルビル。オーストリア航空のチェックインは自動化されているので、すぐに出発ロビーに入れてしまった。早く来すぎたかな。
ミュンヘン空港の仮眠スペース。これから日本まで長旅なので、ここらで身体を休める。
日本へ帰る便。まわりに日本人があふれていて、短いバケーションの終わりを感じさせる。
羽田空港で飛行機を降りると、グラウンドスタッフが待機しているのが見えた。世の中がゴールデンウィークだと浮かれている間にも休まず働いているインフラ関連の皆様には頭が下がる。

出発に戻る